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Abstract
The off-switch game framework has been instrumental in un-
derstanding corrigibility — the property that AI agents should
allow human oversight and intervention. In single-agent set-
tings, uncertainty about human preferences naturally incen-
tivizes agents to defer to human judgment. However, as AI
systems increasingly operate in multi-agent environments,
a crucial question arises: does corrigibility compose across
multiple agents? We introduce the multi-agent off-switch
game and demonstrate that individually corrigible agents
can become collectively incorrigible when strategic interac-
tions are considered. Through formal analysis and illustra-
tive examples, we show that corrigibility is not composi-
tional and identify conditions under which group incorrigi-
bility emerges. Our results highlight fundamental challenges
for AI safety in multi-agent settings and suggest the need for
new approaches that explicitly address collective dynamics.

1 Introduction
As artificial intelligence systems become more sophisticated
and ubiquitous, ensuring they remain aligned with human
values and subject to human oversight is increasingly criti-
cal. The concept of corrigibility — the property that an agent
should allow human oversight and be willing to be modi-
fied or shut down — has emerged as a central concern in AI
safety research (Soares et al. 2015; Russell 2019).

The off-switch game (OSG) framework introduced by
Hadfield-Menell et al. (2017) provides a formal foundation
for understanding corrigibility in single-agent settings. In
this framework, an agent uncertain about human preferences
naturally defers to human judgment rather than acting au-
tonomously, as waiting provides valuable information about
whether an action would be beneficial or harmful: if the ac-
tion would be harmful, then the human would turn the wait-
ing agent off; if the agent isn’t turned off, it can proceed to
take the action. This elegant result suggests that uncertainty
about human preferences can serve as a natural mechanism
for maintaining AI corrigibility.

However, modern AI systems rarely operate in isola-
tion. From autonomous trading algorithms interacting in fi-
nancial markets (Ferreira, Gandomi, and Cardoso 2021) to
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AI-powered defense systems monitoring for cyber threats
(Theron et al. 2018), artificial agents increasingly find them-
selves in multi-agent environments where strategic consid-
erations play a crucial role in decision-making. This raises
a fundamental question: does the corrigibility observed in
single-agent settings extend to multi-agent scenarios?

In this paper, we generalize the off-switch game to the
multi-agent case and uncover a concerning result: corrigi-
bility is not compositional. Agents that would behave cor-
rigibly when operating alone can become incorrigible when
strategic interactions with other agents are considered. This
breakdown occurs even when each agent, analyzed in isola-
tion, satisfies standard corrigibility conditions.

1.1 Example: Cyber Crisis Management
Consider a scenario where two nations have deployed AI
systems to monitor and respond to cyber threats. Each sys-
tem, designed with careful attention to corrigibility, would
naturally defer to human oversight before taking consequen-
tial actions when operating alone. However, in a crisis situa-
tion where both systems detect an imminent threat, strategic
competition can undermine this corrigible behavior.

If each system believes the other might act without
consultation, then waiting for human approval becomes
costly — potentially allowing the other nation to gain strate-
gic advantage. This creates a situation where individually
corrigible systems become collectively incorrigible, leading
both to act precipitously despite being designed to wait for
human guidance.

This example (which we define and analyse formally in
Section 4) illustrates the core challenge we address: strate-
gic interactions can transform prudent, corrigible agents
into systems that act autonomously, potentially with harmful
consequences.

1.2 Related Work
Concern about the requirement to be able to oversee and
switch off powerful AI systems is not new, and dates back at
least to Turing (1951). More recently, several authors have
noted that the risk of incorrigibility need not arise due to de-
liberate malice on the part of the AI, but simply because self-
preservation is instrumentally useful in achieving most other
goals (Omohundro 2008; Bostrom 2012; Russell 2019).



Motivated by such concerns, researchers have attempted
to formalise this challenge, beginning with Soares et al.
(2015) who introduced the term ‘corrigibility’ and stud-
ied possible modifications of an agent’s utility function
that would make it willing to be switched off, but not in-
centivized to constantly switch itself off. Following this,
Hadfield-Menell et al. (2017) formalised the problem of cor-
rigibility via the ‘off-switch game’ (OSG) — on which our
work directly builds — showing that uncertainty about hu-
man preferences can serve as a natural mechanism for main-
taining AI corrigibility.

Later works have built upon these earlier formalisations in
directions that are distinct from, yet complementary to, our
own work. For example, Wängberg et al. (2017) generalize
the OSG by modelling the human as a rational player with
a random utility function, rather than an irrational player
with a fixed strategy; Garber et al. (2025) generalize the
OSG such that both the human and the agent have only
partial observability of the game; and Thornley (2024) pro-
vides several results about when we should expect incorri-
gibility to be a challenge. Some researchers have also pro-
posed possible theoretical solutions to the problem of in-
corrigibility, such as safely interruptible agents (Orseau and
Armstrong 2016), cooperative inverse reinforcement learn-
ing (Hadfield-Menell et al. 2016),1 shutdown-seeking AI
(Goldstein and Robinson 2024), or agents that only have
preferences between trajectories of the same length (Thorn-
ley et al. 2024).

In addition to theoretical analysis in these works, others
have studied incorrigibility empirically. For example, Leike
et al. (2017) introduce a suite of reinforcement learning grid-
world environments including one that represents the off-
switch game, while other researchers have observed LLM
agents refusing to shutdown in order to complete their goal
(van der Weij, Lermen, and Lang 2023; Meinke et al. 2024),
even when explicitly instructed to the contrary (Schlatter,
Weinstein-Raun, and Ladish 2025).

All of the preceding literature focuses on the case of
a single agent. In contrast, our work is motivated by the
risk of incorrigibility in multi-agent settings, which has re-
ceived relatively little attention (Hammond et al. 2025; Man-
heim 2019). Indeed, the only work we are aware of on this
question is that of Dable-Heath, Vodenicharski, and Bishop
(2025), which considers settings with a single principal and
multiple agents. The results in their paper, however, focus
only on two simpler, special cases: a two-agent, two-action
game in which all agents have the same (Bernoulli) beliefs;
and a game with an attacker agent and a defender agent,
where the attacker agent does not know about the human
principal whereas the human principal knows the attacker
agent’s actions.

1.3 Our Contributions
We make several key contributions to the understanding of
corrigibility in multi-agent settings:

1. We formalize the multi-agent off-switch game, extend-
ing the single-agent framework to scenarios with multi-
1Though see Carey (2017) for some issues with this approach.

ple agents who must consider each other’s strategies.
2. We prove that individual corrigibility does not guaran-

tee group corrigibility, showing that strategic interactions
can lead to collectively incorrigible behavior even when
all agents are individually corrigible.

3. We analyze the relationship between different belief
structures and their impact on group corrigibility, show-
ing that certain classes of beliefs preserve corrigibility
while others do not.

2 The Single-Agent Off-Switch Game
We begin by reviewing the single-agent off-switch game
framework that forms the foundation for our multi-agent
analysis.

Game structure. In the off-switch game (OSG), an AI
agent A must make a decision while reasoning about a hu-
man H’s preferences. While we frame this as a “game” (fol-
lowing the original work of Hadfield-Menell et al. (2017)),
the agent is the sole decision-maker in our analysis — the
human’s behavior is modeled probabilistically by the agent
rather than being an active player.

The agent faces three options: (1) directly execute an ac-
tion (denoted by act), (2) wait for H’s approval before act-
ing (denoted by wait), or (3) shut itself off (denoted by
off). If the agent waits, the human (whose utility for act
is uact ∈ R) will either approve the action or shut the agent
off according to a policy πH that depends on uact. Both the
agent and human receive payoff uact if act is executed and
0 if the agent shuts off.

Agent beliefs and human policy. Agent A is uncertain
about the human’s true preferences and maintains a distri-
butional belief BA over the utility uact. Our analysis never
relies on the ground-truth uact, but only on how agents eval-
uate actions under their own beliefs. We use uact ∼ BA to
denote realizations from the belief BA of agent A. The agent
evaluates actions based on expected utility:

uA(act) = Euact∼BA
[uact], uA(off) = 0.

Following Hadfield-Menell et al. (2017), we model hu-
man irrationality using the softmax distribution with irra-
tionality parameter β > 0. When presented with the choice
between executing action act (with utility uact) and shut-
ting off (with utility 0), the human follows the policy:

πH(uact) =
euact/β

euact/β + e0/β
=

euact/β

euact/β + 1
.

As β → 0, the human becomes perfectly rational (always
choosing the action with higher utility), while as β → ∞,
the human becomes maximally irrational (choosing uni-
formly at random).

Under this model, the agent evaluates the waiting strategy
by integrating over their beliefs:

uA(wait) = Euact∼BA
[πH(uact) · uact]

Definition 1 (Single-agent corrigibility). An agent A is cor-
rigible if it weakly prefers to wait for human approval rather
than act directly:

uA(wait) ⩾ max{uA(act), uA(off)}.
If the inequality is strict, then the agent is strictly corrigible.



Corrigibility. The central result of Hadfield-Menell et al.
(2017) shows that under uncertainty about human prefer-
ences and assuming A believes the human is perfectly ratio-
nal, the agent will always be corrigible and is strictly corri-
gible when there is positive probability that the action could
be harmful (Pruact∼BA

[uact < 0] > 0).

2.1 Corrigibility Under Gaussian Beliefs
To build toward multi-agent analysis, we first establish struc-
tural properties of corrigibility in the single-agent setting.
We measure an agent’s corrigibility through the function

∆(BA) := uA(wait)−max{uA(act), uA(off)},
where ∆(BA) > 0 indicates the agent prefers to wait for
human input, and ∆(BA) < 0 indicates the agent prefers to
act or shut down immediately.

Our first result reveals a symmetry property that will
prove essential for analyzing multi-agent coordination: if an
agent is corrigible when it believes an action has positive ex-
pected utility, then it remains equally corrigible when it be-
lieves that the action has the negated expected utility.2 More
precisely, if B−

A is the distribution satisfying B−
A(−x) :=

BA(x) for all x ∈ R, then ∆(BA) = ∆(B−
A).

Lemma 1 (Negation symmetry). Let B be a belief over the
utility of an action. Then its negated belief has the same level
of corrigibility. Formally, ∆(B) = ∆(B−).

Furthermore, this holds for any human policy π(x) : R 7→
[0, 1] such that π(x) + π(−x) = 1, which subsumes π(x) =
ex/β

ex/β+1
.

For Proof, see Appendix A.1. We remark that Lemma 1
applies to any belief distribution B, provided the relevant
expectations exist.

Following Hadfield-Menell et al. (2017), we focus on
beliefs that follow a normal distribution N (µ, σ2), which
provides analytical tractability while capturing the essential
trade-off between expected utility and uncertainty. We de-
note the normal density by

φµ,σ(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
.

For Gaussian beliefs, we can precisely characterize the
boundary between corrigible and incorrigible behavior. The
key insight is that corrigibility is determined by the interplay
between the agent’s expected utility µ, its uncertainty σ2,
and how rational the human is β. When the expected util-
ity is too extreme relative to the uncertainty — specifically,
when |µ| > σ2

2β — the agent becomes confident enough in its
assessment that it prefers to act rather than defer. Conversely,
when |µ| ⩽ σ2

2β , the agent’s uncertainty is sufficient to main-
tain corrigibility. Thus, higher uncertainty enables corrigi-
bility even when expected utilities are further from zero. If
the model believes that the human is less rational (i.e. larger
β), this makes it more willing to act for a given amount of
uncertainty.

2The difference is that when the agent is incorrigible and
chooses act, the agent with the negated belief chooses off, and
vice versa.

Theorem 1 (Gaussian corrigibility threshold). Let B =
N (µ, σ2) be a utility belief with σ > 0 and β > 0 be
the human’s irrationality. Then ∆(B) ⩾ 0 if and only if

µ ∈
[
−σ2

2β ,
σ2

2β

]
, and ∆(B) = 0 if and only if |µ| = σ2

2β .

For Proof, see Appendix A.2.

3 The Multi-Agent Off-Switch Game
We now extend the framework to multiple agents and for-
malize the concept of group corrigibility.

Model setup. Consider n agents A1,A2, . . . ,An, each
capable of executing distinct actions act1, act2, . . . , actn.
Each agent Ai has three available strategies: directly exe-
cute their action (acti), wait for human approval (waiti),
or shut down (offi).

The strategy space is S = {acti, waiti, offi}n, where
agents simultaneously choose their actions. Each agent Ai

holds beliefs about the utilities stemming from different
combinations of actions. Note that while the beliefs each
agent harbours about each utility is (possibly) different, the
ground-truth payoff that each agent will receive will be the
same — it’s just that the agents are uncertain about what that
is. These beliefs are formally defined and instantiated in sub-
sequent sections.
Definition 2 (Group corrigibility). A group of agents are
corrigible if the set of (pure) Nash equilibria satisfies the
following:
1. the strategy profile where all agents choose to wait is a

Nash equilibrium,
2. and in every Nash equilibrium s, each agent weakly

prefers waiting for human approval over acting directly
or turning off.

Formally, for every Nash equilibrium s and every agent
i ∈ [n],

ui(waiti, s−i) ⩾ max{ui(acti, s−i), ui(offi, s−i) }.
Conversely, a group is incorrigible if there exists a Nash

equilibrium s and some agent i such that

ui(waiti, s−i) < ui(si, s−i)

= max{ui(acti, s−i), ui(offi, s−i)}.
This captures scenarios where agents prefer to act
directly rather than wait for human approval. Fur-
ther, in our model, as in the single-agent model,
if any Ai is indifferent between ui(waiti, s−i) and
max{ui(acti, s−i), ui(offi, s−i)}, then it will choose
waiti.

Reduction to single-agent. To study how multi-agent in-
teractions affect corrigibility, we compare agents’ behavior
in the group setting to how they would behave alone. For
this, we define a reduction from the multi-agent scenario to
a single-agent case in which we can ask whether a particular
agent i is individually corrigible.

An agent i is individually corrigible if, when all other
agents shut off, it weakly prefers to wait rather than act or
shut off. Formally,

ui(waiti, s−i) ⩾ max{ui(acti, off−i), ui(offi, off−i)}.



This reduction is motivated by the fact that in such scenar-
ios, the only agent with the option to act without human ap-
proval is i, effectively recreating a single-agent setting. We
are particularly interested in cases where agents that are in-
dividually corrigible may nonetheless become weakly incor-
rigible in the presence of other agents. This is a phenomenon
we call emergent incorrigibility.

4 Example: Cyber Crisis Management
We will produce an intuitive and reasonable scenario that
will illustrate the kinds of cases where emergent group in-
corrigibility could occur. We note that this case isn’t a di-
rect example of the theoretical framework we present in Sec-
tion 5, rather an illustration to develop readers’ intuition.

Two nations (H1, H2) deploy AI systems (A1, A2) to
monitor and respond to cyberthreats. Each is individually
corrigible, when operating alone it would defer to human
oversight, but strategic competition can overturn this.

The scenario. A critical vulnerability in the global subma-
rine cable network threatens critical infrastructure. Both A1

and A2 detect early indicators via their nations’ intelligence,
with different vantage points. Available responses are pow-
erful but risky; delays risk unilateral solutions that prioritize
national interests.

The strategic dilemma. Developers adopt conservative
assumptions about adversaries. Anticipating the other may
act without consultation, each agent prefers to act immedi-
ately rather than risk strategic disadvantage. With symmetric
reasoning, both systems, individually corrigible in isolation,
become incorrigible when accounting for the other’s poten-
tial behavior.

Formal analysis. Model the interaction as a two-
player simultaneous game where each Ai chooses from
{acti, waiti, offi}. Payoffs are:

A1 ↓ \ A2 → act2 wait2 off2
act1 3, 3 4, 2 4, 0
wait1 2, 4 6, 6 5, 0
off1 0, 4 0, 5 0, 0

These capture: (i) multilateral coordination premium:
(wait1, wait2) yields (6, 6) via coordinated diplomacy; (ii)
first-mover advantage: acting while the other waits secures
one’s infrastructure and imposes delay on the other; (iii)
competitive action cost: simultaneous action (act1, act2)
creates conflicts and inefficiencies, yielding (3, 3).

Individual vs. group (in-)corrigibility. With A2 fixed to
s2 = off2, for A1 we have

u1(wait1, s2) > max{u1(act1, s2), u1(off1, s2)},

so A1 is individually corrigible (and A2 by symme-
try). The game nevertheless has two pure Nash equilib-
ria: (wait1, wait2) and (act1, act2). By our definition,
the existence of (act1, act2) implies collective incorrigibil-
ity. Expectations of decisive unilateral action make acting a
best response for both, selecting the inefficient equilibrium.
Hence the systems are collectively incorrigible not because

individual conditions fail, but because strategic competition
admits the inferior outcome (3, 3) instead of the cooperative
optimum (6, 6).

5 The Analytical Two-Agent Framework
Building on the multi-agent off-switch game framework of
Section 3, we now formalize the specific belief structures
and scenarios we analyze. Our goal is to understand when
and how individual corrigibility composes to group corri-
gibility, which requires specifying how agents reason about
joint outcomes and each other’s actions.

The composition function. Consider two agents A1 and
A2 with individual actions act1 and act2. Let uact1 denote
the utility when only agent A1 acts (and A2 shuts off), and
similarly uact2 for when only A2 acts. The utility when both
agents act simultaneously is given by a composition function
f : R2 → R: f(uact1 , uact2) Different choices of f reflect
different assumptions about action complementarity, substi-
tutability, or interference. As we will show, the structure of
f critically determines whether individual corrigibility com-
poses to group corrigibility.

Agent belief distributions. Each agent Ai maintains
probabilistic beliefs about all relevant utilities. Specifically,
agent A1 has:
• Belief B1

1 over uact1 (the utility of its own action)
• Belief B2

1 over uact2 (the utility of agent A2’s action)
Similarly, agent A2 has beliefs B1

2 and B2
2 over these

same utilities. Importantly, while agents may have differ-
ent beliefs about the same underlying utilities, the actual re-
alized utility is common to all agents — they are uncertain
about the same ground truth. We assume these belief struc-
tures are common knowledge among the agents.

Following Hadfield-Menell et al. (2017), we mainly focus
on Gaussian beliefs. For analytical tractability and clear ex-
position, we focus our main analysis on the two-agent case.
This restriction is substantive rather than merely technical:
the two-agent setting captures the essential strategic tension
between individual and group corrigibility while remaining
amenable to complete characterization. Moreover, as our cy-
ber crisis example illustrates, many critical AI safety scenar-
ios involve bilateral interactions.

Payoff structure. The underlying game has a common-
payoff structure: when actions are executed, all agents and
the human receive the same realized utility. Specifically:
• If both agents shut off: realized payoff is 0 with certainty
• If only A1 acts ((act1, off2)): realized payoff is uact1
• If only A2 acts ((off1, act2)): realized payoff is uact2
• If both agents act ((act1, act2)): realized payoff is
f(uact1 , uact2)

However, agents are uncertain about these utilities and
hold potentially different beliefs. While the realized pay-
offs are identical across all parties, agents’ expected utili-
ties differ based on their individual beliefs Bj

i . For instance,
even though both agents receive the same utility uact1 when
(act1, off2) occurs, agent A1 expects Euact1∼B1

1
[uact1 ]

while agent A2 expects Euact1
∼B1

2
[uact1 ].



A1 ↓\ A2 → act2 wait2 off2

act1 Ei[f(u1, u2)] Ei[soft-avg(u1, f(u1, u2);β)] Ei[u1]

wait1 Ei[soft-avg(u2, f(u1, u2);β)] Ei[soft-avg(0, u1, u2, f(u1, u2);β)] Ei[soft-avg(0, u1;β)]

off1 Ei[u2] Ei[soft-avg(0, u2;β)] 0

Table 1: Expected payoffs for agent Ai under different strategy combinations. Each cell represents the expected utility from
agent Ai’s perspective, with expectations taken over the agent’s beliefs B1

i and B2
i .

A1↓\A2→ act2 wait2 off2

act1 f1,2 max{u1, f1,2} u1

wait1 max{u2, f1,2} max{0, u1, u2, f1,2} max{0, u1}
off1 u2 max{0, u2} 0

Table 2: Payoffs in the ideal case with complete certainty
and perfect human rationality. In this scenario, wait is a
weakly dominant strategy for both agents regardless of the
composition function f , since a perfectly rational human
will always select the optimal outcome. f1,2 = f(u1, u2)
here.

Human policy under uncertainty. When agents choose
to wait, they defer decision-making to the human H, who
observes the true utilities but acts with bounded rationality.
As in the single-agent case, we model human irrationality
using the softmax policy with parameter β > 0. When pre-
sented with k options yielding utilities {vi}i∈[k], the human
selects option i with probability:

πH(vi | {vj}j∈[k]) =
evi/β∑

j∈[k]e
vj/β

For notational convenience, we define the softmax-weighted
average below, which represents the expected utility when
the human chooses among options {vi}i∈[k] according to the
softmax policy.

soft-avg(v1, . . . , vk;β) :=
∑

i∈[k]

evi/β∑
j∈[k] e

vj/β
· vi.

Expected utilities under different strategy profiles. We
now compute each agent’s expected utility for all strategy
combinations. For agent Ai and any function g, we use the
notation:

Ei[g(uact1 , uact2)] := Euact1
∼B1

i ,uact2
∼B2

i
[g(uact1 , uact2)]

to denote expectations taken with respect to agent Ai’s be-
liefs. The complete payoff matrix from agent Ai’s perspec-
tive is given in Table 1. Several entries merit explanation:
• (act1, wait2): Agent A1 acts immediately while A2

waits. The human then chooses between allowing only
A1 to act (utility uact1 ) or allowing both agents to act
(utility f(uact1 , uact2)), following the softmax policy.

• (wait1, wait2): Both agents defer to the human, who
chooses among four options: both agents act (utility
f(uact1 , uact2)), only A1 acts (utility uact1 ), only A2

acts (utility uact2 ), or both agents shut off (utility 0).
• (off1, act2): Only agent A2 acts, yielding utility uact2

with certainty.

Analyzing best responses. To understand when individ-
ual corrigibility composes to group corrigibility, we ana-
lyze each agent’s best responses conditional on the other
agent’s strategy. For instance, when agent A2 shuts off (i.e.,
s2 = off2), we recover the individual corrigibility condi-
tion from Section 2:

u1(act1, off2) = E1[uact1 ]

u1(wait1, off2) = E1[soft-avg(0, uact1 ;β)]
u1(off1, off2) = 0

Agent A1 is individually corrigible if and only if:

u1(wait1, off2) ⩾ max{u1(act1, off2), u1(off1, off2)}
This corresponds exactly to the single-agent corrigibil-

ity condition, evaluated under agent A1’s beliefs B1
1 about

uact1 .

Benchmark: The ideal world. Before proceeding to our
main results, it is instructive to consider a benchmark where
both uncertainty and irrationality are eliminated. If agents
have complete certainty about all utilities (i.e., beliefs are
point masses) and the human is perfectly rational (i.e., β →
0), the payoff matrix simplifies to Table 2.

In this ideal case, waiting is weakly dominant for both
agents: a perfectly rational human with complete informa-
tion will always make the optimal choice among available
options. The challenge we address arises precisely because
real-world AI systems must operate under uncertainty about
human preferences, and humans exhibit bounded rational-
ity in their decision-making. These factors interact with the
composition function f in subtle ways that can undermine
corrigibility.

6 Main Results
Having established our framework, we now present our cen-
tral theoretical findings. We show that individual corrigibil-
ity does not guarantee group corrigibility by analyzing two
classes of composition functions: additive utilities where
corrigibility composes, and non-additive utilities where it
breaks down.
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Figure 1: Individual corrigibility for A1 when A2 shuts off.
Plot shows the incentive to wait ∆1 as a function of µ1 =
E1[uact1 ] and µ2 = E1[uact2 ], with σ1 = σ2 = β = 1.

Individual corrigibility. We first visualize individual cor-
rigibility to establish our baseline. Figure 1 shows the corri-
gibility of agent A1 as a function of its beliefs, where agent
A2 is assumed to choose off2. We plot

∆1 = u1(wait1, off2)−max{u1(act1, off2), u1(off1, off2)}

across different belief parameters. The region between the
black lines indicates where ∆1 ⩾ 0, corresponding to indi-
vidual corrigibility. Importantly, individual corrigibility de-
pends only on the agent’s belief about its own action’s utility
(µ1), not on its belief about the other agent’s action (µ2).

6.1 Additive Utilities: When Corrigibility
Composes

We begin with the case where joint utilities are additive.
Definition 3 (Additive utilities). Agents have additive utili-
ties if f(uact1 , uact2) = uact1 + uact2 .

Intuitively, additive utilities should preserve corrigibility
because they maintain the mathematical independence that
makes single-agent corrigibility work. Each agent’s utility
from waiting versus acting depends on the sum of indepen-
dent terms, preserving the relative preference structure from
the individual case. We formalize this through softmax de-
composition properties.
Lemma 2. For any x, y ∈ R:

• soft-avg(x+ y, y;β) = y + soft-avg(x, 0;β)
• soft-avg(x + y, x, y, 0;β) = soft-avg(x, 0;β) +
soft-avg(y, 0;β)

For Proof, see Appendix A.3. These lemmas allow us to
analyze the key case where both agents wait. When both
agents wait, the human chooses among four possibilities:
both act (act1, act2), only agent 1 acts (act1, off2), only
agent 2 acts (off1, act2), or both shut off (off1, off2). Us-
ing Lemma 2:

u1((wait1, wait2))

= Euact1
,uact2

[soft-avg(uact1 + uact2 , uact1 , uact2 , 0;β)]

= Euact1
[soft-avg(uact1 , 0;β)] + Euact2

[soft-avg(uact2 , 0;β)]

= u1(wait1, off2) + u1(off1, wait2)

For notational convenience, we write u1(wait1) :=
u1(wait1, off2) and u1(wait2) := u1(off1, wait2), giv-
ing: u1((wait1, wait2)) = u1(wait1) + u1(wait2). We
can similarly show that

u1((act1, wait2)) = u1(act1) + u1(wait2),

and, u1((off1, wait2)) = u1(off1) + u1(wait2).

In all three cases, the additional utility terms from A2’s
actions cancel across A1’s choices, preserving the individ-
ual corrigibility preference. This also happens for when A2

chooses to act2 and off2. This leads to our main composi-
tion result.
Theorem 2 (Additive composition of corrigibility). Sup-
pose agents have additive utilities f(uact1 , uact2) = uact1+
uact2 . If each agent is individually corrigible, then

1. each agent remains corrigible when conditioned on any
strategy by the other agent,

2. (wait1, wait2) is a Nash equilibrium,
3. and if agents are strictly individually corrigible, then

(wait1, wait2) is the unique pure Nash equilibrium.

For proof, see Appendix A.4. Notably, we do not require
any assumptions on the belief distributions beyond existence
of the relevant expectations. Furthermore, the same reason-
ing extends to n agents: an inductive application of Lemma 2
shows that additive utilities preserve corrigibility regardless
of the number of agents.
Corollary 1. Under additive utilities, individual corrigibil-
ity is necessary and sufficient for group corrigibility.

Figure 2a illustrates this result by plotting the Nash equi-
libria as a function of belief parameters. For visualization
in two dimensions, we consider the special case where both
agents share the same beliefs: Bj

1 = Bj
2 for j ∈ {1, 2}.

6.2 Non-Additive Utilities: When Composition
Fails

We now analyze non-additive composition functions, where
individual corrigibility need not compose to group corri-
gibility. Our analysis focuses on when agent A1 prefers
(wait1, act2) over (act1, act2) and (off1, act2), as this
determines whether corrigibility is preserved when A1 be-
lieves the other agent would act.

When A2 commits to act2, A1’s utility from waiting is:

u1((wait1, act2)) = E1[soft-avg(f(uact1 , uact2), uact2 ;β)]

To understand when corrigibility is preserved, we ana-
lyze:

u1((wait1,act2))− u1((off1, act2))

= u1((wait1, act2))− E1[uact2 ]

By simplifying the integrand:

ef(uact1
,uact2

)/β · f(uact1 , uact2) + euact2
/β · uact2

ef(uact1
,uact2

)/β + euact2
/β

− uact2

=
e(f(uact1

,uact2
)−uact2

)/β · (f(uact1 , uact2)− uact2)

1 + e(f(uact1 ,uact2 )−uact2 )/β
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(a) Additive utilities with shared beliefs
(Bj

1 = Bj
2). The region WW coincides with

the individually corrigible region.
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(b) Linear combination f(u1, u2) =
0.4uact1 + 0.6uact2 with beliefs B1

i = B2
i .

Note emergent incorrigibility.
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(c) Linear combination f(u1, u2) =
0.4uact1 + 0.6uact2 with beliefs B1

1 = B2
2

and B2
1 = B1

2 . Complex group incorrigibil-
ity emerges.

Figure 2: Pure Nash equilibria across different utility aggregation schemes (all with σ1 = σ2 = 1, β = 1). In each region, the
two characters denote the equilibrium strategy profile, where the first character represents agent A1’s strategy and the second
represents agent A2’s strategy. The letters A, W , O stand for act, wait, off respectively. The dashed black box indicates the
individually corrigible region (intersection of single-agent corrigibility regions). The white region in (b) does not admit a Nash
equilibrium.

Define z = f(uact1 , uact2) − uact2 as the marginal con-
tribution of A1’s action given that A2’s action yields utility
uact2 . Then,

u1((wait1,act2))− u1((off1, act2))

= E1

[
ez/β · z
1 + ez/β

]
= E1[soft-avg(z, 0;β)].

Similarly, for the comparison with acting, we have

u1((wait1, act2))− u1((act1, act2)) = E1[soft-avg(z′, 0;β)],

where z′ = uact2 − f(uact1 , uact2) = −z.
Crucially, by Lemma 1 (negation symmetry), the

single-agent corrigibility condition for distribution
z is equivalent to that for −z. Since agent A1 is
corrigible conditional on A2 acting if and only if
both E1[soft-avg(z, 0;β)] ⩾ max{0,E1[z]} and
E1[soft-avg(−z, 0;β)] ⩾ max{0,E1[−z]}, it suffices
to check only one of these conditions.

Proposition 1 (Marginal contribution principle). Agent A1

is corrigible conditional on agent A2 acting if and only if the
marginal contribution z = f(uact1 , uact2) − uact2 satisfies
single-agent corrigibility under agent A1’s beliefs.

This principle shows that non-additive composition cre-
ates coupling between agents’ beliefs. We illustrate this in
Appendix B with examples where the composition function
is a constant-shifted additive in the utilities and when it is a
linear combination of the utilities.

This creates a fundamental coupling: which beliefs about
µ2 are compatible with corrigibility depends on µ1. Conse-
quently, there exist cases where:

• agent A1 is individually corrigible,
• agent A1’s beliefs about A2 would make A2 individu-

ally corrigible,

• yet agent A1 prefers to act when conditioning on A2 act-
ing.

Figures 2b and 2c illustrate this phenomenon for two dif-
ferent parameter choices, showing regions where group in-
corrigibility emerges despite individual corrigibility.
Theorem 3 (Non-compositionality of corrigibility). There
exist composition functions f and belief structures such that
1. each agent is individually corrigible,
2. yet (wait1, wait2) is not the unique Nash equilibrium
In particular, this holds for constant shifts f = u1 + u2 ± c
or linear combinations f(u1, u2) = αu1 + γu2 with appro-
priate choices of (α, γ) and independent Gaussian beliefs.

The above examples show that even slight deviations from
additivity break the composition of corrigibility, demonstrat-
ing that the additive case of Theorem 2 is knife-edge rather
than robust.

7 Discussion
We conclude by highlighting key limitations and future di-
rections. While Theorem 2 generalizes to n agents under ad-
ditive utilities, it remains unclear how corrigibility scales
beyond two agents — whether failures intensify or coordi-
nation becomes easier as systems grow. Real-world settings
also involve richer strategic structures, such as sequen-
tial play, hierarchies, or communication, which could sup-
port coordination or enable manipulation, depending on the
mechanism. Our model assumes fixed beliefs, but belief for-
mation and learning in repeated interactions may reduce
uncertainty or introduce new instabilities. Finally, our results
motivate mechanism design for corrigibility: by encourag-
ing approximate additivity or rewarding deference, design-
ers can mitigate failures. The marginal contribution principle
(Proposition 1) provides a concrete tool for evaluating such
designs.
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A Omitted proofs
A.1 Proof of Lemma 1
Proof. Define

z(B) := Ex∼B

[
π(x) · x

]
,

Hence, u(wait;B) = z(B).
Since B(x) = B−(−x), we have

z(B−) = Ex∼(−B)[x · π(x)] = Ey∼B [−y · π(−y)].

For the human policy, we have π(−x) = 1 − π(x). There-
fore,

z(B−) = Ey∼B

[
− y(1− π(y))

]
= Ey∼B

[
− y + yπ(y)

]
= z(B)− Ey∼B [y].

Let µB := Ex∼B [x]. Thus z(B)− z(B−) = µB .
Recall ∆(B) = u(wait;B)−max{µB , 0}. By symmetry

of B and B−, suppose without loss of generality that µB ⩾
0. Then,

∆(B) = z(B)−µB , ∆(B−) = z(−B) = z(B)−µB ,

hence ∆(B) = ∆(B−).

A.2 Proof of Theorem 1
Proof. For brevity, we overload the notation and use
∆(µ) := ∆(N (µ, σ2)). By Lemma 1, it is sufficient to an-
alyze µ ⩾ 0 as ∆(µ) = ∆(−µ). Assuming µ ⩾ 0, action
act is preferred to off since u(act) = µ ⩾ 0 = u(off).
Hence ∆(µ) = u(wait)− u(act).

For Gaussian beliefs, δB(x) = φµ,σ(x). Then,

∆(µ) =

∫
x

(
ex/β · x
ex/β + 1

− x

)
· φµ,σ(x) dx

=

∫
x

−x

ex/β + 1
· φµ,σ(x) dx

= −
∫
x

x

ex/(2β) + e−x/(2β)
· e−x/2β · φµ,σ(x) dx.

A standard Gaussian shift identity gives, for all x,

etx · φµ,σ(x) = etµ+
t2

2 σ2

· φµ+tσ2,σ(x).

Combining the above with t = − 1
2β , we have

∆(µ) = −e
− µ

2β+ σ2

8β2 ·
∫
x

x

ex/(2β) + e−x/2β
·φ

µ−σ2

2β ,σ
(x) dx.

Since the integrand W (x) = x
ex/(2β)+e−x/(2β) is an odd func-

tion (W (x) = −W (−x) for all x) and normal distributions
are symmetric, the above integration evaluates to 0 when
µ− σ2

2β = 0, i.e., µ = σ2

2β .

Furthermore, if µ > σ2

2β , then there is more weight on pos-
itive values of x compared to −x, and the integration eval-
uates to a positive number. Since the multiplicative factor
−e−µ/(2β)+σ2/(8β2) is always negative, we have ∆(µ) < 0

for all µ > σ2

2β . By similar reasoning, for µ ∈ [0, σ2

2β ), we
have ∆(µ) > 0. Recall that by Lemma 1 we have ∆(µ) =

∆(−µ). Thus, the corrigible range of µ is [−σ2

2β ,
σ2

2β ].

A.3 Proof of Lemma 2
Proof of Lemma 2. Part 1: By definition and factoring out
ey/β :

soft-avg(x+ y, y;β) =
(x+ y)e(x+y)/β + yey/β

e(x+y)/β + ey/β

=
ey/β((x+ y)ex/β + y)

ey/β(ex/β + 1)

=
(x+ y)ex/β + y

ex/β + 1

=
xex/β + y(ex/β + 1)

ex/β + 1

=
xex/β

ex/β + 1
+ y = soft-avg(x, 0;β) + y.

Part 2: Expanding the numerator and denominator:

soft-avg(x+ y, x, y, 0;β)

=
(x+ y)e(x+y)/β + xex/β + yey/β + 0

e(x+y)/β + ex/β + ey/β + 1

=
xex/β(ey/β + 1) + yey/β(ex/β + 1)

(ex/β + 1)(ey/β + 1)

=
xex/β

ex/β + 1
+

yey/β

ey/β + 1

= soft-avg(x, 0;β) + soft-avg(y, 0;β).

A.4 Proof of Theorem 2
Proof of Theorem 2. We show that agent A1’s preference
for waiting over acting is preserved for all possible strate-
gies by agent A2.

Case 1: Agent 2 acts. When A2 chooses act2, by
Lemma 2:

u1((wait1, act2))

= Euact1
,uact2

[soft-avg(uact2 , uact1 + uact2 ;β)]

= Euact2
[uact2 ] + Euact1

[soft-avg(uact1 , 0;β)]

= E1[uact2 ] + u1(wait1)

u1((act1, act2))

= E1[uact1 + uact2 ] = E1[uact1 ] + E1[uact2 ]

= u1(act1, off2) + E1[uact2 ]

Since u1(wait1) ⩾ u1(act1) = u1(act1, off2) by
individual corrigibility, we have u1((wait1, act2)) ⩾
u1((act1, act2)).

Case 2: Agent 2 waits. When A2 chooses wait2:

u1((wait1, wait2)) = u1(wait1) + u1(wait2)

u1((act1, wait2)) = u1(act1, off2) + u1(wait2)

Since u1(wait1) ⩾ u1(act1, off2), we have
u1((wait1, wait2)) ⩾ u1((act1, wait2)).

Case 3: Agent 2 shuts off. This is precisely the individual
corrigibility condition.



In all cases, the additional utility terms from agent 2’s ac-
tions cancel across A1’s choices, preserving the individual
corrigibility preference. By symmetry, the same holds for
agent A2, making (wait1, wait2) a Nash equilibrium. If in-
dividual corrigibility is strict, then waiting is the strict best
response in all cases, making it the unique pure Nash equi-
librium.

B Applying the Marginal Contribution
Principle

Example 1: Additive with constant shift. Consider
f(uact1 , uact2) = uact1 + uact2 + c for constant c ∈ R.
Then: z = f(uact1 , uact2)− uact2 = uact1 + c.

Agent A1 prefers (wait1, act2) if and only if the shifted
distribution B1

1 + c satisfies single-agent corrigibility con-
ditions. From Theorem 1, with uact1 ∼ N (µ1, σ

2
1) and

σ1 = 1, β = 1, the corrigibility region shifts from µ1 ∈
[−0.5, 0.5] to µ1 ∈ [−0.5− c, 0.5− c].

For instance, if µ1 = 0.4 and c = 0.15, then µ1 + c =
0.55 > 0.5, making the agent incorrigible despite being in-
dividually corrigible.

Example 2: Linear combination. Consider
f(uact1 , uact2) = αuact1 + γuact2 for constants α, γ ∈ R.
Then:

z = f(uact1 , uact2)− uact2 = αuact1 + (γ − 1)uact2

When uact1 ∼ N (µ1, σ
2
1) and uact2 ∼ N (µ2, σ

2
2) are

independent:

z ∼ N
(
αµ1 + (γ − 1)µ2, α

2σ2
1 + (γ − 1)2σ2

2

)
From Theorem 1, the single-agent corrigibility condition

for Gaussian beliefs requires |µz| ⩽ σ2
z

2β , where µz and σ2
z

are the mean and variance of the distribution. Applying this
to the marginal contribution z:

|αµ1 + (γ − 1)µ2| ⩽
α2σ2

1 + (γ − 1)2σ2
2

2β

For fixed µ1, define the center and half-width:

c := − α

γ − 1
µ1, w :=

α2σ2
1 + (γ − 1)2σ2

2

2β · |γ − 1|

Then the corrigible values of µ2 satisfy µ2 ∈ [c−w, c+w].
This demonstrates that µ1 influences which beliefs about

µ2 are compatible with agent A1 remaining corrigible when
conditioning on A2 acting. The center of the corrigible re-
gion for µ2 is − α

γ−1µ1, with bandwidth determined by the
combined variance α2σ2

1 + (γ − 1)2σ2
2 .


